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SUMMARY

The advantages inherent in the Boundary Element Method (BEM) for potential flows are
exploited to solve viscous flow problems. The trick is the introduction of a so-called Dual Re-
ciprocal technique in which the convective terms ave represented by a global function whose
unknown coefficients are determined by collocation. The approach. which is necessarily it-
erative. converts the governing partial differential equations (PDIs) into integral equations
via the distribution of fictitious sources or dipoles ol unknown strength on the boundary.
These integral equations consist of two parts. The first is a boundary integral term. whose
kernel is the unknown strength of the fictitious sources aud the fundamental solution of a
convection-free flow problem. The second part is a domain integral term whose kernel is the
convective portion of the governing PDEs. The domain integration can be transformed to
the boundary by using the Dual Reciprocal (DR) concept. The resulting formulation is a
pure boundary integral computational process.

INTRODUCTION

The major advantage the BEM approach enjoyvs over other techuiques is the confinement
of the computation to the boundary. The result is the reduction in the effective dimension -
of the problem. The efficiency with which linear problems in continua can be solved using
BEM has received considerable mention in the literature during the past decade. Apart from
the reduced dimensionality and the need for no special domain discretization. other derived
advantages include:

1. the ability to handle infinitely large domains:

2. a much reduced coefficient matrix:
3. the ease with which singularities are handled:

4. the restriction of the discretization errors to the boundary. so that the solution is as
good as the description of the boundary geometry:

5. the robustness when complex geometries are involved:

6. the ability to find solutions a posteriori at desired points. not at nodes predetermined
by the domain discretization:
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7. the great latitude in solving transient problems by a) using the appropriate time depen-
dent fundamental solution in the fornmlation: b) applying the technique in a transform
domain (e.g.. Laplace or Fourier): or ¢) using a time marching procedure.

Efforts at applying boundary integral techniques to nonlinear problems are quite recent. For
over a decade the main focus was largelv on linear problems such as potential flows (see
€.9.. Brebbia et al.. [1984]. Liggett & Liu [1981]). BEM formulatious for nonlinear (e.g.,
Lafe et al., [1981]: Lafe & ('ahan [1990]) or those in heterogeneous continua (¢.g.. Cheng
[1984]: Lafe €t al.. [1987-1992] have relied Leavily on iterative methods which still require
some domain integration. The Dual Reciprocal technique creates a major path for exploiting
the advantages of BEM to solve nonlinear problems such as convective flows. No domain
integration is involved when the Dual Reciprocal approach is {ollowed. 7

The original credit for Dual Reciprocal BE concept goes to Nardini & Brebhia [1982]
who first suggested an innovative approach for transforming domain integrals to the bound-
ary. However, until recently. prior investigations (sce r.q.. Brebbia (1991]; Partridge et al.,
[1992]) did not make use of a complete set of global functions. A series of local radial func-
tions were utilized. This made convergence dilficult or impossible for a class of nonlinear
problems. This author and his co-workers (see Cheng ¢! al.. [1993]) have recently derived a
set of complete coordinate functions which have heen tested on a family of strongly nonlinear
PDEs. Excellent results have heen obtained with the complete set. This work opens the
door to the application of BEM to a wide spectrum of complex flow problems.

In this paper. we present the full formulation of the Dual Reciprocal Boundary Element

Method (DRBEMI). for incompressible convective flows.

GOVERNING EQUATIONS

are:
o Continuity Equation

Viv=0 (1)
e C'onservation of Mowmentun
(v ] l
(.—+(v-\‘)v=——Vp+—V-r+g (2)
9] p N

where v is the velocity. p i pressure. g is the gravitational accelerator vector. 7 is the
viscous stress tensor. If g ix viscosity. then for a Newtonian fluid. 7 is expressible in
the form:

T=u\v

Dimensionless Equations

Let L = characteristic length scale. ¥ = mean velocity. and i is the elevation of the point
{(x). We can define the {ollowing dimensionless variables:

X. = x/[? (3)
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v, = V/T (4)
p o= +gn/(r) (5)
t. = IT/L (6)
With these. the above conservation statements can be made dimeusionless:
Vv = 0 (7)
v [ . R
— A = -V - —VZV. (b
o T V- Vv Pt )
where
R. =ptL/y = Revnolds Number (9)
The governing equations can be rearranged and written in the pseudo-Poisson forn:
ViP(x..t) = F(X.. 1) ' (10)
where o
® = { V. ‘,(‘IO,(;”'T' (11)
p- Pressure
and o '
Rojov. il + (v.-V)v. + Sp] Velocity Equation
F= (12)

=V (v Vv Pressure Fquation

The pressure equation is obtained by introducing the continuity equation into the divergence
of the momentum equation. Note that in the velocity equation. @ and £ are vectors with
two (for 2-D and axi-symmetric problems) or three (for 3-D problems) components. We will
now drop the * prefix in the dimensionless variables. for convenience. '
For most flow problems the houndary conditions will generally consist of three types:

¢ Dirichlet Boundary (I's)
¢ =9,

* Neumann Boundary (')
oo
Q = —— = (gl,

el
where J®/dn = Y& - n. and n is the unit vector normal to the boundary.

o Mixed ([‘_\,)
(®.Vd.x./)=0

where ( is some specified [unction. A free-surface will he an example of the third. In most
iterative schemes it is usual to recast the Mixed boundary condition in the form of either
the Dirichlet or the Neumann types.
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BOUNDARY INTEGRAL EQUATIONS

We will use equation (10) as the representative PDE in developing the integral equations.
If fictitious sources of strength w are distributed around T. equation (10) can be converted
into the integral expression (see Jaswon & Svinnn [1977]):

d(x) = /ru'(x’)g(x.x’)(lx’+ /s; F(x")g(x.x") dx" (13)

where g is the free-space Green's function which must satisfy:
Vig(x.x') = 6(x.x") (14)

where 6 is the Dirac delta function applied at a point x’ and felt at x. The closed form
solution to equation (1) is (Greenberg [1971]):

Inr/2%  in two-dimensions
9(x.x') = (15)
1/(4=r) in three-dimensions

in which r = |[x — x/|. The last term in equation (13) represents a domain integral. To
convert this into an integration on the bhoundary we introduce the Dual Reciprocal concept
(Cheng et al.. [1993]).

DUAL RECIPROCAL TECHNIQUE

Consider nr points on I' and in Q. We introdnce a family of coordinate functions M;(x)

() = 1.2.---n7) such that:
"T

Fix)x= 3 4M,(x) | (16)
=1 o i

where .3, are coefficients to be determined by collocation.  We assume for each function -

M;(x). there exists an associated function W, (x) such that:

V4 (x) = M, (x) (17)

K

It can be shown (Cheng & Quazar [195)3]) that for a two- dimensional problem for which
M; = r"y" the function W, is given by:

Z[%{](—l )k-l gl lymdh n—2k42 m > n
k=1 (420 (n=2042) -
o
¥, = (13)
Z[ﬂ'_;u] l k=1 m!u!.l""+""“'/”+""
k=1 (—=1) (m—2ht 2tz <n

where the square brackets in the upper limit of the summation denote the integer part of
the argument. Solutious for other possible families of coordinate functions are presented in
Table 1.

480




Table 1

L

Dim.

M,

W,

vZ

V'I

\'7'2

V‘Z

V‘Z

V)

Vi

Vi -

Vi

Vi -

v

V..

Axi

3D

Axi

3D

Axi

3D

Axi

iD

cos(n.r) cos(my)
Ko(nr)cos(kz)
cos(nx) cos(my)cos(hz)

E(n.r+m y)

Ko(nrye*:
elnrtm y+k7)
cos(n.r) cos(my)
KNo(nr)cos(kz)
cos(n.r) cos(my) cos(hz)

t("f+m'u)

Ro(nr)e*:

((n.r+my+l':)

-\
(n?+m?)

- M

(n2+k%)

-V
(n2+mit+k)

M,
(n2+m2)

.\’[
(n?4+42)

M,
(n24mi4i?)

-M
(n2+m2-\?%)

-\
(n2+k2=\%)

-\
(n2+m?+k2=2\2)

A\l -
(nd4+me=\2)

AL
(")+‘~‘2—-\2)

N

—
(nd4mi4k2=-\2)

in which A is the zeroth order modified Bessel function of the first kind. When equations
(16) and (17) are used in (10). and we distribute the fictitious sources on ' we can obtain

the ‘pure’ boundary integral equation:

An expression for the gradient of ¢, which is required in equation (12) can be obtained from

equation (19) as:

2(x) = [ w(x)gl

To(x) = /r w(x') Vg

nr

J=

I]T

j=1
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The normal derivative 9®/dn = V& - n is given hy:
od / dg
—_— w(x Xx.x')
on (x) = r ( )0 (
Assuming 3; (j = 1.2---n) are known. the only unknown in equations (19) and/or (21)
is the source strength distribution w on I'. The trick is to start with a trial distribution of
F(x) and to obtain the coefficients 3; () = 1.2---nr) by collocation using equation (16).
When applied to all nt selected points the result of the collocation is the matrix equation:

nr
Z V3, =F i=12.nr (22)

o r)\Il
r)n

x) (21)

J=1

where M;; = Mj(x;) and F, = F(x;). The matrix svstem (22) is also expressible in the form:
Ms3=F (23)

which can be inverted to give:
3=M"'F (24)
Once J has been determined. equations (19) aud/or (21) are then combined with the
prescribed boundary conditions and solved for w on . A better estimate of F is then
obtained by using equations {19) and ()0) in (12). The solution process continues until a
specified convergence criterion is satisfied.

DISCRETIZATION

We subdivide the boundary into n, elements. Let . Ve(x) (A = 1.2.---ny) represent the
boundary shape functions describing the distribution of « on T. B\ selecting each of the n,
boundary points as successive origins of integration. equations (19) and (21) can be assembled
into the system:

ng

Yodatty = b, P= L2 (25)
where
' _ [“- X x)(lx’ X,‘El-qs 2%
ik = { Jro Nk r) J/()n (X'.x;) dx’ x, € Tg (26)
b. ¢'(X,) - Z"T )’ q},, X, € r@ (.)T)
' e /on(x;) — Z"’r 3,00, /in x, €To B

Therefore, we have ny, equations to determine wy, (k = 1.2, .- ni). Symbolically equation
(25) can be written in the alternative form:

aw = b o (28)

which can be inverted to give:
=a"'b (29)
The whole process hoils down to the iterative solution of equations (24) and (29). with

repeated updating of F using (12). At each time level 1. the iterative steps ave:
1. Start with a trial F (i.c.. F; values for 1'6= 1.2.---n7).
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Obtain 3 from equation {24).
3. Obtain w using equation (29).

4. Use discretized forms of equations (19) and (20) to compute &, V& at all nr points.
This provides a better estimate for F.

5. Go back to Step 2 if convergence condition is still unsatisfied.

Note that the matrix iuversions in equations (24) and (29) need only be performed once,
for fixed boundary problems. The vectors w and 7 are the quantities whose values change
during the iterative process. Once convergence is reached. equations (19) and (20) can be
ased routinely to obtain ® = (v..p.) or the gradient at any point (x) of interest.

Treatment of Time Derivatives

We now need to address the treatment of the local acceleration term dv/dt as occurs when
equation {11) is written for the velocity. \We discuss two efficient approaches for handling
this term. The first is based on the use of a time- dependent fundamental solution. The
second utilizes a simple time-marching procedure.

Time-dependent Fundamental Solution

Equation (11), written for the velocity (i.c.. & = v). can be re-arranged into the alternative
form .

LO(x.1) = F(x.1) (30)
where
C o v o p 20
L = V)-hn Y

F = R (v Vv + \Wi

The boundary integral equation in this case is

f ar
@(x.f):/(: /[ w(x A g(x X" dX dE D 1P (x.1) (31)
Jo . e

where the functions g and ¥, st respectively satisfv the following PDEs

Lg(x.t.x'. 1) = o(x.1.X.1) (32)
LU¥(x.1) = M,/(x.1) (33)

The closed-form solution for (32) is (see Greeuberg [1971]))

—L(I,f__,f;) exp {—_u’j‘_":,)} in two-dimensions
glx.t.x'.1") = (34)

CH{t—¢ 2\ - . ¥
‘ (’j_if)g_ H exp g-ﬁ} in three-dimensions
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where H is the Heaviside function.

The extra computational effort required here is the time integration. fg(-). at each time
level. However, this approach has the major advantage that no difference approximation is
introduced in the evaluation of the time derivative, and the exact time-dependent funda-
mental solution is utilized in the integral equation.

Time-marching Procedure

In this approach we assume the time derivative can be approximated by the difference equa-
tion ' ' N '

ov _ vV — Vg

Y,
where vg is the velocity at a previous time level. The velocity equation (30) is still valid but
the differential operator £ and [oraing function F now become

. R

v = 20y — .

L= V)=

F—R[—V° Y v]
= ,—Af+(vU- )'vo + Vp

The boundary integral equation in this case is

nr
®(x.1) = /[ (X )g(x.x") dx' + 3 3,W(x.1) (35)

=i
where the functions g and ¥, must respectively satisly

Ly(x.X') = &x.x') (36)
LY(x.1) = M,/(x.1) (37)

It is easily shown that

Ky (\/Ei) in two-dimeunsions
g(x.x") = (38)
%exp {- ( %;I)} in three-dimensions
The time-marching approach has the obvious advantage of not requiring an explicit time
integration. as in the first method. Furthermore, for fixed boundary problems. the free-
space function ¢ need not be calculated at each time level. The iterative scheme can now be
replaced by the time-marching process. However. the presence of At and R, in the argument
of the Green’s function creates the need for extrenie caution in the numerical evaluation of
g. As the time step is reduced to improve accuracy. or as the flow moves away from the
laminar regime. the numerical value of ¢ reduces very rapidly.
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CONCLUSIONS

New concepts in boundary element modeling provide excellent approaches for solving con-
vective transport problems. A formal determination of the advantages inherent in the new
DRBEM formulation can easily be accomplished. In general. we expect optimum nt (=total
number of collocation points selected to evaluate coefficients .3) to he of the same order as
the number. n;, of boundary elements. Therefore. tle largest matrix size in BEM will be of
order ny x ny = n?. By comparison. the domain techniques. because of the need to discretize
the entire region, will produce a global matrix size of order nf x n} = nj. The advantage
in terms of storage requirements is obvious. Moreover. the much reduced size of the global
matrix has a more pronounced advantage in total CPU time.

For example, in a 2-D flow problem discretized with 100 boundary elements, the matrix
size using the domain methods (if no special consideration is given to matrix bandedness)
will be 10* larger than that of BEML Even with the sparseness of the global matrix taken into
account in the domain methods. a boundary element approach still enjoys a size advantage
proportional to the bandwidth of the matrix. The computational advantage in 3-D is more
significant because of the much increased number of meshes in the domain techniques.

These computational advantages are key to effective modeling of convective flows. The
compactness of BEM matrices allows for a greater freedom to experiment. even on computers
of average memory. DRBEM provides an excellent platform for optimizing system geometry.
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